
Path planning [HW2]
Special Topics in Robotics

Jakub Tomasek

October 12, 2013

Contents

1 Problem speci�cation 1

2 Solution 2

3 Conclusion 4

1 Problem speci�cation

Implement a path planning algorithm to navigate robot in given environment speci�ed by

a given map (see Fig. 1.1). Make simulations. Robot starts at coordinates xs =

[
220
140

]
;

meanwhile the goal position is xg =

[
80
40

]
.

Figure 1.1: Map for path planning

1

Special Topics in Robotics 2013 Jakub Tomá²ek

2 Solution

I used the potential �eld method. In the potential �eld method, the robot is attracted
towards the goal position and repelled from the obstacles he obseres. I chose parabolic
potential for the attractive forces as it was suggested in lecture:

Uattr =
1

2
kd2 ,

where d is distance from the goal and k is arbitrary constant. Potential was pre-generated
for each point in map. Repulsive forces were generated at each step of robot based on the
distance of the obstacles from the robot:

Frep =

{
−kr

(
1
d3o

− 1
d2odcrit

)
n do < dcrit

0 otherwise
,

where do is distance to the obstacle, dcrit is a critical distance and n is the unit vector
pointing from the robot towards the obstacle.

Obviously, for the chosen attractive potential and for the given map there are some local

minima, e.g. around point

[
90
78

]
and the small corridor. To eliminate this problem which

causes stacking the robot, I tilted the attractive potential in the critical area of the corridor.

I chose Matlab for the simulation. This piece of program pre-generates the attractive
potential function.

1 %generate the attractive potential

2 attractive=zeros(size(map));

3 for x=1: size(map ,1)

4 for y=1: size(map ,2)

5 attractive(y,x)=1/2* distance ([x;y],goal)^2;

6 end

7 end

8

9 %tilt the potential in the corridor

10 InflexPoint =[90;78];

11 infl=zeros(size(map));

12 kinfl =1.2;

13 for x=(InflexPoint (1) -60):(InflexPoint (1) +300)

14 for y=(InflexPoint (2)):(InflexPoint (2) +200)

15 infl(y,x)=k2*x;

16 end

17 end

18

19 attractive=attractive+infl;

20 %get the x and y forces

21 [FXa , FYa] = gradient(attractive);

At each step of robot, repulsive force is determined based on the distance from the obstacles:

1 function force=getRepulsiveForce(surroundings ,N,v,criticalDistance ,krep)

2 expanded=zeros(N,v);

3 distances=zeros(N,1);

4

5 %for each angle we rotate the image and get line at zero degree

6 for k=0:N-1

2

Special Topics in Robotics 2013 Jakub Tomá²ek

7 rotated=imrotate(surroundings ,360/N*k);

8 c=round(size(rotated)/2);

9 expanded(k+1,:)=rotated(c(2),c(1)+1:c(1)+v);

10

11 end

12

13 %we determine distance at each angle

14 for k=1:N

15 line=expanded(k,:);

16 l=1;

17 while line(l)==1

18 l=l+1;

19 if(l==v)

20 distances(k)=Inf;

21 break;

22 end

23 end

24 distances(k)=l;

25 end

26

27 %we sum forces from each angle

28 F=[0;0];

29

30 for k=1:N

31 d=distances(k);

32 angle =2*pi/N*(k-1);

33 if(d<criticalDistance)

34 F=F-krep *(1/d^3 -1/(d^2* criticalDistance))*[cos(angle);sin(

angle)];

35 end

36 end

37 force=F;

38 end

The robot is moved by the forces until it reaches the goal:

1 while ~isGoal(goal ,position)

2

3 %robot doesn 't see the whole map

4 surroundings=getSurroundings(map ,visibility ,rpos);

5

6 %we determine distance from the obstacles and find the repulsive

force

7 Frep=getRepulsiveForce(surroundings ,numberOfAngles ,visibility ,

criticalDistance ,krep)

8 Fatt=-k*[FXa(rpos (2),rpos (1));FYa(rpos (2),rpos (1))];

9 F=Frep+Fatt;

10 %in case that the force is too large for our hypothetic motor :)

11 F=limitSpeed(F,maxSpeed);

12

13 position=position +2*F;

14 positions=cat(2,positions ,position);

15 rpos=round(position);

16 displayMap(map ,position ,positions);

17

18 c=c+1;

19 M(c)=getframe(gcf);

20 end

3

Special Topics in Robotics 2013 Jakub Tomá²ek

3 Conclusion

50 100 150 200 250 300 350 400 450

20

40

60

80

100

120

140

160

180

200

(a) Final force �eld

50 100 150 200 250 300 350 400

20

40

60

80

100

120

140

160

180

200

0

50

100

150

200

250

(b) Potential function

Figure 3.1: (a) Shape of the force �eld and (b) potential function in left top 400×200 area.

After tilting the potential function, the robot is able to navigate from the start coor-
dinates to the goal as well as other initial coordinates without colliding with obsta-
cles; see Fig. 3.2 which depicts the trajectories. Additionally, I generated animations
(http://www.youtube.com/watch?v=935OUciGIkA). Important part of the task was also
to identify right parameter values such as k, krep or the critical distance dcrit. Figures 3.1a
and 3.1b show the force �eld and �nal potential. One can observe the slight tilt in the area
of the hallway.

50 100 150 200 250 300 350 400 450

20

40

60

80

100

120

140

160

180

200

Figure 3.2: Sample trajectories for several di�erent initial coordinates. The goal is high-
lighted by red start.

4

	Problem specification
	Solution
	Conclusion

