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1 Problem speci�cation

Implement a path planning algorithm to navigate robot in given environment speci�ed by

a given map (see Fig. 1.1). Make simulations. Robot starts at coordinates xs =

[
220
140

]
;

meanwhile the goal position is xg =

[
80
40

]
.

Figure 1.1: Map for path planning
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2 Solution

I used the potential �eld method. In the potential �eld method, the robot is attracted
towards the goal position and repelled from the obstacles he obseres. I chose parabolic
potential for the attractive forces as it was suggested in lecture:

Uattr =
1

2
kd2 ,

where d is distance from the goal and k is arbitrary constant. Potential was pre-generated
for each point in map. Repulsive forces were generated at each step of robot based on the
distance of the obstacles from the robot:

Frep =

{
−kr

(
1
d3o

− 1
d2odcrit

)
n do < dcrit

0 otherwise
,

where do is distance to the obstacle, dcrit is a critical distance and n is the unit vector
pointing from the robot towards the obstacle.

Obviously, for the chosen attractive potential and for the given map there are some local

minima, e.g. around point

[
90
78

]
and the small corridor. To eliminate this problem which

causes stacking the robot, I tilted the attractive potential in the critical area of the corridor.

I chose Matlab for the simulation. This piece of program pre-generates the attractive
potential function.

1 %generate the attractive potential

2 attractive=zeros(size(map));

3 for x=1: size(map ,1)

4 for y=1: size(map ,2)

5 attractive(y,x)=1/2* distance ([x;y],goal)^2;

6 end

7 end

8

9 %tilt the potential in the corridor

10 InflexPoint =[90;78];

11 infl=zeros(size(map));

12 kinfl =1.2;

13 for x=( InflexPoint (1) -60):( InflexPoint (1) +300)

14 for y=( InflexPoint (2)):( InflexPoint (2) +200)

15 infl(y,x)=k2*x;

16 end

17 end

18

19 attractive=attractive+infl;

20 %get the x and y forces

21 [FXa , FYa] = gradient(attractive);

At each step of robot, repulsive force is determined based on the distance from the obstacles:

1 function force=getRepulsiveForce(surroundings ,N,v,criticalDistance ,krep)

2 expanded=zeros(N,v);

3 distances=zeros(N,1);

4

5 %for each angle we rotate the image and get line at zero degree

6 for k=0:N-1
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7 rotated=imrotate(surroundings ,360/N*k);

8 c=round(size(rotated)/2);

9 expanded(k+1,:)=rotated(c(2),c(1)+1:c(1)+v);

10

11 end

12

13 %we determine distance at each angle

14 for k=1:N

15 line=expanded(k,:);

16 l=1;

17 while line(l)==1

18 l=l+1;

19 if(l==v)

20 distances(k)=Inf;

21 break;

22 end

23 end

24 distances(k)=l;

25 end

26

27 %we sum forces from each angle

28 F=[0;0];

29

30 for k=1:N

31 d=distances(k);

32 angle =2*pi/N*(k-1);

33 if(d<criticalDistance)

34 F=F-krep *(1/d^3 -1/(d^2* criticalDistance))*[cos(angle);sin(

angle)];

35 end

36 end

37 force=F;

38 end

The robot is moved by the forces until it reaches the goal:

1 while ~isGoal(goal ,position)

2

3 %robot doesn 't see the whole map

4 surroundings=getSurroundings(map ,visibility ,rpos);

5

6 %we determine distance from the obstacles and find the repulsive

force

7 Frep=getRepulsiveForce(surroundings ,numberOfAngles ,visibility ,

criticalDistance ,krep)

8 Fatt=-k*[FXa(rpos (2),rpos (1));FYa(rpos (2),rpos (1))];

9 F=Frep+Fatt;

10 %in case that the force is too large for our hypothetic motor :)

11 F=limitSpeed(F,maxSpeed);

12

13 position=position +2*F;

14 positions=cat(2,positions ,position);

15 rpos=round(position);

16 displayMap(map ,position ,positions);

17

18 c=c+1;

19 M(c)=getframe(gcf);

20 end
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3 Conclusion
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(a) Final force �eld
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(b) Potential function

Figure 3.1: (a) Shape of the force �eld and (b) potential function in left top 400×200 area.

After tilting the potential function, the robot is able to navigate from the start coor-
dinates to the goal as well as other initial coordinates without colliding with obsta-
cles; see Fig. 3.2 which depicts the trajectories. Additionally, I generated animations
(http://www.youtube.com/watch?v=935OUciGIkA). Important part of the task was also
to identify right parameter values such as k, krep or the critical distance dcrit. Figures 3.1a
and 3.1b show the force �eld and �nal potential. One can observe the slight tilt in the area
of the hallway.
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Figure 3.2: Sample trajectories for several di�erent initial coordinates. The goal is high-
lighted by red start.
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